CLIMATE SMART, SUSTAINABLE **AND INCLUSIVE** AGRICULTURE PRACTICES

> Romeo V. Labios, PhD International Agriculture & Farming Systems Specialist FAO RAP

CONTENT

- GHG emission from the Agriculture Sector
- Challenges in the Adoption of CSA Practices
- Major Structural Changes Needed in Asian Agriculture
- Initiatives in the Region in the Adoption & Promotion of CSA Practices
- Guidelines for Promotion and Adoption of CSA Practices
- Suggested Principles for the Promotion and Adoption of CSA Practices
- Key Messages

Global Greenhouse Gas Emissions by Economic Sector

Global Greenhouse Gas Emissions by Gas

Figure 1: World Map of the Global Climate Risk Index 2000 - 2019

Source: Germanwatch and Munich Re NatCatSERVICE

Figure 1: Global agrifood systems emissions by component and indicator

Source: FAO. 2022. Emissions totals. In: *FAO*. Rome. Cited October 2022. <u>https://www.fao.org/faostat/en/#data/GT</u> and FAO. 2022. Emissions shares. In: *FAO*. Rome. Cited October 2022. <u>https://www.fao.org/faostat/en/#data/EM</u>

Note: Emissions/removals on forestland (which are not part of agrifood systems emissions) are also shown as included in the FAOSTAT Emissions database.

Source: FAO. 2022. Emissions totals. In: *FAO*. Rome. Cited October 2022. https://www.fao.org/faostat/en/#data/GT

Figure 4: Regional agrifood systems emissions and share in total emissions (2020)

Source: FAO. 2022. Emissions totals. In: *FAO*. Rome. Cited October 2022. <u>https://www.fao.org/faostat/en/#data/GT</u> and FAO. 2022. Emissions shares. In: *FAO*. Rome. Cited October 2022. <u>https://www.fao.org/faostat/en/#data/EM</u>

Challonges in	Challenge #1	Despite the availability, there is limited adoption due to lack of financial incentives to the farmers
the Adoption	Challenge # 2	Digital agriculture is not properly introduced to farmers in terms of the cost efficiency of the new technologies (i.e., decision support tools, mobile apps, and computer GIS mapping)
Smart	Challenge # 3 Additional costs without any immediat financial benefit	
Agriculture	Challenge # 4	Possible carbon credit system requires a system-level approach
Practices	Challenge # 5	Enabling policy at national and local levels on CSA practices at scale and carbon credit system in the agriculture sector

Major structural changes needed in Asian Agriculture

- Technology leap in mechanization and digitalization
- Farm reorganization of separate smallholder farms into out-grower cooperatives of small farms with commercial nucleuses
- Shift from traditional production to circular and bio-economy-based production of evolved and diversified principal and by-products

Rice Farming

has the largest GHG footprint, with 12 percent of global emissions coming from flooded rice fields as methane gas (CH_4) is linked to anaerobic conditions resulting from submerged paddy fields and has a global warming potential 28 times higher than carbon dioxide (CO_2) .

Bringing Synergy: Combining Climate Smart Varieties with Good Agronomy

Intervention	Yield increase (%)		
Improved variety (IV)	21-69%		
Improved management (IM)	16-38%		
IV + IM	51-130%		

Ayeyawardy Delta

	_					
			Fresh	Brackish	Saline	Total
	V1	IV1	6	6	6	18
Saltor STL		IV2				0
Sin Thu Kha	V2	IV1				0
		IV2	4		4	8
BR 11 Sub 1	V3	IV1				0
		IV2	2	6	2	10
Paw San Yin	V4			2	2	4
Bay Gyar	V5	FV – Land Race			2	2
Thai Bay Gyar	V6			2		2
Manaw Thukha	V7	FV – Modern Variety	2			2
Sin Thwe Latt	V8		4	2	2	8

When both improved varieties (IV) and improved management (IM) were applied, the advantage was about 20% under fresh water, 43% under brackish, and 37% under saline water conditions over FV+FM. The overall mean across locations indicated an advantage of 1 t per hectare (>31%).

Existing adaptation & mitigation options across the rice production cycle

can reduce as much as 65% - mostly methane

Shift in Crop Establishment Methods in Asia

Productivity and profitability has been low

- High seed rate (180-350 kg/ha) of own saved seed
 - Low adoption of quality seeds of inbred/hybrids
 - No/low mechanized seeding
 - Weed and Pest management
 ✓ High weed infestation, high yield losses
 - ✓ High herbicide and pesticide use
 - Lodging associated with high seed rate and broadcast method

DSR area (%) in selected Asian countries

Source: Virender Kumar, IRRI, 2023

Pre-germinated seeds + puddled soil

Dry seed + non-puddled soil

Pre-germinated seeds in standing water + puddled or on-puddled soil

> Source: Virender Kumar, IRRI, 2023

Why mechanized DSR (mDSR)

Productivity and profitability has been low

- High seed rate (180-350 kg/ha) of own saved seed
- Low adoption of quality seeds of inbred/hybrids
- No/low mechanized seeding
 - Weed and Pest management
 ✓ High weed infestation, high yield losses
 - \checkmark High herbicide and pesticide use
- Lodging associated with high seed rate and broadcast method

mDSR + improved variety + improved agronomy

- Reduce seed rate through mDSR
- Use of high-quality seed of improved variety
- Reduce pest pressure through optimum crop density and integrated weed management
- Reduce lodging through optimum crop density and balanced nutrient management
- Higher yield and profitability

Source: Nguyen Van Hung, IRRI, 2023

mDSR Technology Development

Dry – mDSR in India

Wet-mDSR - (line/row) seeding

Drone broadcast- seeding

Dry - mDSR in Cambodia

Wet - mDSR - Hill seeding

Wet - mDSR - combined fer. deep placement

Drone line seeding (Liu, et al., 2022, under development)

Cambodia: Large imported machines have limited reach; three local manufacturers designed small seeders; through projects, they improved various parts.

Vietnam: Wet mDSR was introduced and tested from 2021 - companies and farmers have started apply with the technical support from projects.

> Source: Nguyen Van Hung, **IRRI, 2023**

The way forward to mDSR

- Site-specific mapping for scale-appropriate precision DSR, considering all value chain processes/ factors (crop calendar, soil, water, climate, seed, fertilizer, pest, mechanization, service providers, market, etc.),
- ✔ To support the adoption of precision DSR:
 - Precision DSR technologies (scale-appropriate dry, wet, scale, operational factors, etc.) and supported interventions, e.g., precision land leveling
 - Contract farming and business model developments, e.g., inclusion of precision DSR associated with best management practices in the contract farming
 - Behavioral change interventions, e.g., farmer perceptions, stakeholder linkages

Source: Nguyen Van Hung, IRRI, 2023

1) Low-Emission Farming: Example - Thai-Rice NAMA Project (2018 – 2023)

- Expected impact of the project is a reduction in methane and nitrous oxide emissions through farmers switching from conventional to low-emission rice production (target: 100,000 HHs)
- Target area CAPSAS: Chainat, Angthong, Pathumthani, Singburi, Ayutthaya, Suphanburi
- Via development of the Government of Thailand's 'Good Agricultural Practices (GAP)++' Standard , an enhanced standard with strengthened environmental and social aspects, to enable farmers to distinguish their rice from conventional production and thus sell to higher-value markets.
- Promoting the adoption of low-emission, irrigated rice production
- Availing mitigation services on the market
- And other interventions

Thai Rice NAMA Technologies

Source: Thomas Jäkel, 2023

https://www.searca.org/pubs/monogr aphs?pid=456 https://caspace.cajar.org/handle/1056 8/106136

The compendium provides overview of:

- Climate-Resilient Agriculture Ts & As in the Philippines
- Challenges in the context of climate change
- Summary of Philippine policies, strategies, programs, and plans related to CRA
- Natural and socioeconomic conditions of different agroecological systems in the Philippines
- CRA Ts & As (description & methodology) applicable in various ecosystems:
 - irrigated lowland
 - rainfed lowland
 - upland
 - hilly land
 - highland
 - coastal
 - and information technology management

Source: http://irri.org/resources/publications/books/guideto-participatory-varietal-selection-forsubmergence-tolerant-rice

Farmer 1 Farmer 2 Farmer 3 Farmer 4 Farmer n... On-farm participatory adaptive research framework (Labios, 2011)

1-

ON-FARM PARTICIPATORY ADAPTIVE

RESEARCH

Participatory Varietal Selection (PVS)

b) Farmer-managed Trials (FM Trials)

Top 3-4 most preferred varieties

Seed Production and Distribution

a) Researcher-managed Trials (RM Trials)

(10-15 entries)

Sensory Evaluation

Seed Multiplication

Formal Varietal Release System

WOCAT

¥ 🛉 🖉 👽 GET INVOLVEDI FAQ GLOSSARY LOGIN Q

Preference Analysis

is open access and contains over 2000 SLM practices

WOCAT Global SLM Database

WOCAT SLM DATABASE

The Global Database on Sustainable Land Management (SLM) of WOCAT (the World Overview of Conservation Approaches and Technologiest provides free access to the documentation of field-tested SLM practices from different places in the world and offers practitioners the opportunity to share their own SLM practices. Due to Its long-term presence and wealth of knowledge. WOCAT's Database has been officially recognized by the UNCCD as the primary recommended Global Database for SLM best practices

5LM in the context of WOCAT is defined as the use of land resources - including soil, water, vegetation and animals - to produce goods and provide services to meet . human needs, while ensuring the long-term productive potential of these resources and sustaining their environmental functions. A SEM practice can be either an 5I M Technology or an SLM Approac

The objective of documenting and assessing SLM practices is to share and spread valuable knowledge in land management, support evidence-based decision making and scale up identified good practices, thereby contributing to preventing and reducing land degradation and to restoring degraded land.

Read more about the WOCAT documentation of SLM practices.

WOCAT SLM Practices guide for UNCCD stakeholders

The Global WOCAT Sustainable Land Management Database is the UNCCD primary recommended Database for SLM best practices and adaptation measures. UNCCD parties and other reporting agencies are encouraged to enter and share SLM best practices in the WOCAT SLM Database, and report in PRAIS under "Implementation Framework" / "Actions on the ground" (see 7.4.1 of the reporting manual).

The one-page guide and short video below help UNCCD stakeholders to understand the process of entering SLM best practices in the WOCAT SLM Database.

N/ United Nations

» Read more about the UNCCD-WOCAT-Partnership

Introductory video WOCAT SLM Database

One-page guide on WOCAT SLM Database

More information on WOCAT in PRAIS 4

WOCAT for PRAIS 4 1.8 1.48 Download

SLM reporting in PRAIS 4 * 1.2 1/18

https://qcat.wocat.net/en/wocat/

ASEAN Guidelines

ASEAN CSA Guidelines Vol. I, Vol. II, and Vol III.

lolume

ASEAN Guidelines have been a critical tool in bringing forward the ASEAN agriculture-forestry-food security (FAF) agenda down to ASEAN member-states.

First two volumes_of ASEAN CSA Guidelines present various successful CSA approaches that were deemed relevant and scalable across the region.

Vol III aims to (a) provide guidance on how ASEAN Member States (AMS) can promote the adoption and upscaling of CSA practices (b) provide assessment guidelines in prioritizing the CSA practices (c) suggest principles for the promotion and adoption of CSA among AMS

ASEAN CSA Guidelines

Volume III: Overview of the Content

Stepwise process of prioritization and implementation principles for CSA promotion and adoption.

Which CSA approach should I

Which CSA practice should I

implement?

Example: Assessment of Contributions to CSA Pillars

*in the absence of biotic/abiotic stress

Which CSA approach should I

implement? Example: Scoring Table for Contributions to CSA Pillars

Scale: A 10-point likert scale (10% increase/decrease at each interval)

-2 -10 -9 -8 -7 -6 -5 -4 -3 0 2 8 9 10 |-1 3 5 6 17 4

	Productivity		Resilience		Emission	
CSA Practices	Does the intervention help to increase productivity?	Does the intervention help to increase income?	Does the intervention help in reducing losses during climatic risk?	Which risk does it help to address?	How much extra fertilizer do you use?	How much extra water do you use?
Stress-Tolerant Rice Varieties						
Site-Specific Nutrient Management						
Controlled Irrigation (Alternate Wetting and Drying Technique)						
Ecological Engineering for Biological Pest Control						
PalayCheck System						

Which CSA approach should I

EXAMPLE: Assessment scoring of CSA practices for irrigated lowland? ecosystems, Philippines (*Contributions to CSA Pillars*)

	Assessment				
CSA Practices	Productivity	Resilience	Emission	Average Score	
Stress-Tolerant Rice Varieties	0.65	1.15	0.71	0.84	
Site-Specific Nutrient Management	1.13	0.69	1.14	0.99 (2)	
Controlled Irrigation (Alternate Wetting and Drying Technique)	0.60	1.28	1.42	1.10 (1)	
Ecological Engineering for Biological Pest Control	0.44	0.50	0.06	0.33	
PalayCheck System	1.69	0.25	0.82	0.92 (3)	
Floating Garden	0.58	0.40	0.20	0.39	
Sorjan System	1.21	0.40	0.20	0.60	
Rice-Fish System	0.94	0.31	0.20	0.48	
Rice-Duck System	1.24	0.67	0.39	0.77	
Laser-controlled land leveling	1.26	0.60	0.29	0.72	
Grain Drying, Storage, Grain Cooling for Postharvest	1.01	0.83	0.08	0.64	
Rice Straw Management	0.94	0.56	0.50	0.67	

Source: Labios et al., 2019

SUGGESTED PRINCIPLES FOR THE PROMOTION AND ADOPTION OF CSA PRACTICES

How can we better promote and adopt CSA practices?

- 1. Creating Scales
- 2. Availability and Access to CSA Financing
- 3. Educating Producers and Consumers
- 4. Digitalization
- 5. Policy and Governance

KEY MESSAGES

- Addressing challenges posed by climate change in food systems will require multi-sector approaches, cooperation, collaboration, and partnerships among stakeholders.
- The development and adoption of ASEAN guidelines are critical steps towards promoting CSA and Digital Technologies in Food and Agricultural Systems.
- However, it is the responsibility of the Member States (MS) to translate the guidelines and recommendations into robust policies and programs
- We need supporting policies and frameworks, inclusive financing, and better access to relevant advanced technology
- At the Regional level, it is still important to harmonize different MS policies and programs for inclusive and sustainable economic growth in the region.

Thank you!

